Реферат: Влияние граничных условий на критическую температуру неоднородных сверхпроводящих мезоструктур

Исследования неоднородных сверхпроводящих мезоструктур, в которых сверхпроводимость обусловлена наличием эффекта близости, представляют большой интерес как с прикладной, так и с фундаментальной точек зрения.


Дата добавления на сайт: 13 июня 2025

Реферат
Влияние граничных условий на критическую температуру неоднородных сверхпроводящих мезоструктур
Исследования неоднородных сверхпроводящих мезоструктур, в которых сверхпроводимость обусловлена наличием эффекта близости, представляют большой интерес как с прикладной, так и с фундаментальной точек зрения.
В данной работе рассматривается проблема влияния внешних границ на критическую температуру структур типа сверхпроводник/нормальный металл (S/N) и сверхпроводник/ферромагнетик (S/F). В качестве структур типа S/N были рассмотрены трехслойные образцы вида N/S/N и S/N/S. В качестве структур S/F типа исследовались бислойные S/F структуры.
Измерения для многослойных структур S/N типа проводились на трехслойных образцах Cu/Nb/Cu и Nb/Cu/Nb, детали приготовления приведены в [1]. Измерения для структур S/F типа были выполнены на образцах Nb/PdNi детали приготовления описаны в [2].
Критические состояния для структур типа S/F и S/N в отсутствии внешнего магнитного поля без учета парамагнитного и спин-орбитального взаимодействия, могут быть описаны с помощью уравнений Узаделя [3]. В качестве условий сшивания на плоскостях контакта сверхпроводящего и несверхпроводящего слоев использовались условия Куприянова - Лукичева [4]. Метод решения приведен в [5].
Из [5] следует, что решение граничной задачи зависит от следующих параметров. Для S/N структур - от критической температуры массивного сверхпроводящего материала (Nb) TS, частоты Дебая wD, длин когерентности в сверхпроводящем и несверхпроводящем слоях:

Влияние граничных условий на критическую температуру неоднородных сверхпроводящих мезоструктур (рис. 1),

Влияние граничных условий на критическую температуру неоднородных сверхпроводящих мезоструктур (рис. 2),

где DS, DN(F) - постоянные диффузии сверхпроводящего и нормального (ферромагнитного) металлов; параметра прозрачности S/N(F) границы Влияние граничных условий на критическую температуру неоднородных сверхпроводящих мезоструктур (рис. 3), и параметра

Влияние граничных условий на критическую температуру неоднородных сверхпроводящих мезоструктур (рис. 4),

где rS, rN(F) - низкотемпературные (при T = 10 K) удельные сопротивления сверхпроводящего и нормального (ферромагнитного) металлов, соответственно. В случае S/F структур, кроме указанных выше параметров, подгоночным также оказывается еще один параметр - энергия обменного взаимодействия Eex.
Дебаевская частота, являясь параметром обрезания, должна быть достаточно большой, чтобы не влиять на критические характеристики сверхпроводника. Это условие с большим запасом выполняется для исследуемых материалов. В частности, для Nb wD = 275 K. Для определения длины когерентности трехслойных S/N структур xS = 6.4 нм были выполнены отдельные измерения Hc2(T). Для бислойных S/F структур получено xS = 6 нм [2].
Значение параметра p = 2.77 в рассматриваемом экспериментальном случае для Cu/Nb/Cu определяется вполне однозначно. Для структуры Nb/Cu/Nb оказывается возможным получить лишь оценку, p » 2.0 - 8.5. Для структуры Nb/PdNi согласно [2] - p » 0.1 - 1.29.
Параметр TS достаточно уверенно можно задать для N/S/N, сравнивая асимптотики экспериментальной и теоретической зависимостей Tc(dS); в результате для Cu/Nb/Cu имеем TS » 9 K. Для Nb/Cu/Nb можно установить лишь интервал допустимых значений 7.5 K хм.θ, Кμэф.(μБ)ТС, К0,01705,92-0,046-12 -635,05 6,051250,069-15 -854,81 5,90135
Экстраполяция до нуля усредненных в области высоких температур зависимостей χMn-1=f(T), которые описываются законом Кюри-Вейсса, дает значение q для образца с составом “хм”, полученным на основе зависимостей χMn-1=f(T) и формул (1, 2).
Авторы работы [4] в рамках высокотемпературного приближения (kБТ>>eA, где eA) - энергия обменного взаимодействия между атомами, которые владеют собственными магнитными моментами) получили такое выражение для величины парамагнитной температуры Кюри:

Влияние граничных условий на критическую температуру неоднородных сверхпроводящих мезоструктур (рис. 21),(3)

где Jp - интеграл обменного взаимодействия для пары соседей, Zp - количество катионных состояний в р- координационной сфере. Константа q0 отвечает предельной величине q(х) для гипотетического магнитного полупроводника с х=1 и структурой полупроводников типа АІІВVI.
Выражение (3) разрешает определить величину обменного интеграла (J1) пары соседей в первой координационной сфере (Z=12):

Влияние граничных условий на критическую температуру неоднородных сверхпроводящих мезоструктур (рис. 22)(4)

Экспериментальная зависимость q(х), которая получена для Hg1-xMnxS является прямой линией. Экстраполяция этой зависимости к х= 1 дает q0= - 990К. Полученное значение q0 разрешает определить величину обменного интеграла (для пар Mn-S-Mn) J1/kБ=-14,1К.
В таблице 1 приведены параметры, которые определены на основе полученных χMn-1=f(T) для образцов Hg1-xMnxS, а именно: содержание магнитной компоненты (хм) (полученое на основе “усредненных” высокотемпературных участков χMn-1=f(T) при Т~300К), парамагнитная температура Кюри (θ), температура излома (ТС), значение эффективного магнитного момента атомов марганца (μэф). Для данного хм нижняя строка параметров относится к более высокотемпературному участку зависимости χMn-1=f(T).
При термообработке кристаллов Hg1-xMnxS, которые владеют довольно выраженной как дефектной, так и кластерной подсистемами, создаются возможности для диффузии в кристалл атомов паров компонент (при отжиге) и вырывания из узлов и миграции атомов по кристаллу и занятия ими разных мест в кристаллической решетке: вакансий, междоузлий, узлов.
Дефектная система в этом случае может способствовать как уменьшению, так и увеличению размеров кластеров и образованию новых кластеров, что проявляется как в изменении кинетических коэффициентов кристаллов (дефекты - электрически активные), так и в изменении магнитных параметров образцов (парамагнитной температуры Кюри (q) и эффективного магнитного момента атомов марганца (mэф.)) (табл. 2), а значит и зависимостей χMn-1=f(T), на основе которых они определяются.

Таблица 2.
Магнитные параметры образцов Hg1-xMnxS
n, см-3 (при Т=300К)θ, Кµэф, µБ (на атом Мn)
до отжигапосле отжигадо отжигапосле отжигадо отжигапосле отжига
0,025до и после отжига в парах ртути
8,6۠۠۠∙ 10171,2∙ 1018-15 -29-18 -545,08 5,755,41 6,03
0,046до и после отжига в парах серы
8,7۠۠۠∙ 10173,1∙ 1017-12 -63-30 -1464,96 5,955,01 6,31

Таким образом термообработка образцов в парах компонент приводит к изменению размеров существующих в кристалле кластеров (размеры кластеров пропорциональные величине θ) и даже к “рассасыванию ” включений второй фазы (т.е. к уменьшению их размеров и преобразованию включений второй фазы MnS в кластеры Mn-S-Mn-S).
Исследование кинетических коэффициентов кристаллов проведены в интервале Т=77-300К и Н=0,5-6 кЭ. Коэффициент Холла (RH) в исследуемых кристаллах почти не зависит от температуры, что указывает на вырождение электронного газа. Электропроводность (σ) кристаллов имеет металлический характер (т.е. уменьшается с ростом температуры), что обусловлено уменьшением подвижности электронов (μН) при увеличении Т. Термо-эдс (α) увеличивается с ростом температуры, что обусловлено уменьшением вырождения электронного газа.
Термообработка образцов Hg1-xMnxS в парах серы приводит к понижению концентрации электронов и увеличению их подвижности, а отжиг в парах ртути увеличивает концентрацию электронов в образцах.

Литература

1.В. А. Грибков, Ф. И. Григорьев, Б. А. Калин, В. Л. Якушин. Перспективные радиационно-пучковые технологии обработки материалов. Круглый год, М. (2001). 528 с.
2.В. М. Асташинский, В. В. Ефремов, Е. А. Костюкевич, А. М. Кузьмицкий, Л. Я. Минько.Физика плазмы 17 (1991). С. 1111-1115.
3.В. В. Углов, В. М. Анищик, Ю. А. Петухов, В. М. Асташинский, А. М. Кузьмицкий, Н. Т. Квасов. / 5th International Conference “New Electrical and Electronic Technology and their Industrial Implementation”, Zakopane, Poland (2007). P.63
4.Диаграммы состояния двойных металлических систем. Т. 3, Кн. 1 / Под ред. Н. П. Лякишева. Машиностроение, М. (1997). 576 с.
5.Мьюрарка Ш. Силициды для СБИС. Мир, М. (1982). 176 с.
6.Вайнгард У. Введение в физику кристаллизации металлов. Мир, М. (1967). 160 с.



Комментарии:

Вы не можете оставлять комментарии. Пожалуйста, зарегистрируйтесь.