Контрольная работа: Расчет автокорреляционной функции одномерной динамической модели
В системах передачи сообщений используются как аналоговые, так и цифровые сигналы. В настоящее время широко применяются цифровые системы передачи.
Дата добавления на сайт: 23 февраля 2025
Расчет автокорреляционной функции одномерной динамической модели
Введение
В системах передачи сообщений используются как аналоговые, так и цифровые сигналы. В настоящее время широко применяются цифровые системы передачи. Так как они обладают более высокой помехоустойчивостью, что позволяет передавать на более далекие расстояния. Так же цифровые системы передачи в аппаратуре преобразования сигналов используют современную элементарную базу цифровой вычислительной технике и микропроцессоров. Поэтому аналоговый сигнал преобразуется в цифровой сигнал и в таком виде передается по линии связи; на приемной стороне происходит обратный процесс - преобразование цифрового сигнала в аналоговый. В общем, периодическая зависимость может быть формально определена как корреляционная зависимость порядка k между каждым i-м элементом ряда и (i-k) - м элементом. Ее можно измерить с помощью автокорреляции (т.е. корреляции между самими членами ряда); k обычно называют лагом (иногда используют эквивалентные термины: сдвиг, запаздывание). Если ошибка измерения не слишком большая, то периодичность можно определить визуально, рассматривая поведение членов ряда через каждые k временных единиц.
1.Описание подходов к построению динамической модели технологического процесса
В настоящее время, в связи со сложностью технологического процесса, с проблемами, возникающими при контроле их характеристик, возникла необходимость все больше и больше применять статистические методы для методического процесса. Но при решении задач анализа технологических процессов, расчета точности производства и решении других практических задач во многих случаях ограничиться только статическими характеристиками не представляется возможным. Более полное представление о процессе можно получить в том случае, когда процесс рассматривается в развитии, при определении его динамических характеристик.
В связи со стохастической природой входных и выходных переменных технологических процессов они рассматриваются как случайные величины или случайные функции. При построении статической модели технологического процесса обычно ограничиваются рассмотрением входных и выходных переменных как случайных величин, а при построении динамической модели - как случайных функций. Если одну из выходных переменных обозначить через Y, считая ее как случайную величину, а входные переменные, которые также являются случайными величинами, обозначить через


дает возможность определить Y в зависимости от фиксированных значений

Для динамической модели входная и выходная переменные рассматриваются как случайные функции, которые обозначим



Очевидно, что статическую модель можно рассматривать как частный случай динамической модели при фиксированных значениях аргументов t и

2.Остановка задачи построения динамической модели
Рассмотрим общую постановку задачи построения динамической модели технологического процесса безотносительно к какому-либо реальному процессу. Представим графически рассматриваемый технологический процесс в виде прямоугольника, как это показано на рис. 10.1 На входе одномерного объекта действует случайная функция



На входе многомерного объекта действует векторная случайная функция




Задачу построения динамической модели технологического процесса рассмотрим для простейшего одномерного случая. Пусть на входе процесса действует случайная функция










Соответствие между входными




Понятие оператора является более общим, чем понятие функции или функционала. Функция ставит в соответствие две переменные величины: например, для функции




оператор интегрирования

Конкретное представление динамической модели технологического процесса может быть различным и зависит от целей исследования, методов решения конкретной задачи и других факторов. Так, динамическая модель линейного одномерного объекта может быть представлена в виде дифференциального уравнения

импульсной переходной (весовой) функцией

частотной характеристикой

где входная переменная

Каждая из этих динамических моделей дает полное описание линейного одномерного объекта, и эти представления эквивалентны; имея один из видов описания, можно в результате соответствующих преобразований перейти к другому.
На основании сказанного выше очевидно, что под построением динамической модели одномерного технологического процесса понимают нахождение оператора, ставящего в соответствие входную














Очевидно, что при построении модели, т.е. при определении





Для того, чтобы задача могла быть конкретизирована, вводится функция потерь, которая зависит от выходных переменных





Известно, что в практических приложениях для решения задач точности производства чаще всего принимается критерий минимума среднего квадрата ошибки, т.е. в этом случае функция потерь


Из статистической динамики известно, что соотношение (2.7) будет выполнено, если потребовать минимума математического ожидания функции



Тогда достаточным условием минимума соотношения (2.7) будет следующее:

Если в качестве критерия выбрать минимум среднего квадрата ошибки, т.е. потребовать выполнения соотношения (2.8), то, учитывая условие (2.10), получим следующее уравнение для определения оптимальной по этому критерию оценки оператора


Из уравнения (2.11) видно, что оператор условного математического ожидания





Будем искать оператор объекта в классе линейных операторов, тогда для получения уравнения, для построения динамической линейной модели умножим обе части уравнения (2.11) на входную случайную функцию


и осредним полученный результат

После осреднения получим

В связи с тем, что оператор




Для конкретного представления полученного результата для линейной динамической системы, например для получения весовой функции объекта уравнением (2.5), не ограничивая общности, можно предположить, что математические ожидания входной









где







Таким образом, динамическая линейная модель может быть получена путем решения уравнения (2.14), если известны корреляционная функция входной переменной и взаимная корреляционная функция входной и выходной переменных.
Аналогичный результат может быть получен, если использовать представление динамического объекта в виде уравнения (2). Обе части последнего умножим на входную случайную функцию


и осредним обе части t

Так как операция математического ожидания и интегрирования коммутативна, то уравнение (2.15) можно представить в виде

Если теперь предположить, что


Практически построение динамической линейной модели значительно упрощается для стационарного объекта, т.е. когда входная и выходная переменные являются стационарными и стационарно связанными. Уравнение (2.13) в этом случае может быть записано в следующем виде:

где






для которого выполняется условие физической возможности системы, т.е.







Сущность аналитического подхода к построению динамической модели заключается в том, что интегральное уравнение2.16 при определенных условиях может быть сведено в интегральному уравнению Вольтерра первого рода типа свертки, которое просто решается при помощи преобразования Лапласа. Пусть по результатам теоретического анализа или статистической обработки экспериментальных данных заданы корреляционная функция







Так как корреляционная функция является симметричной функцией аргумента t, то

и, если корреляционная функция




то уравнение2.16 можно свести к уравнению Вольтерра первого рода типа свертки. Условие 3.3 будет выполнено, когда в функцию



при этом естественно, что условие 3.2 не выполняется, так как взаимная корреляционная функция несимметрична.
Заключение
решение математический аппроксимация уравнение
Построение динамической модели одномерного линейного стационарного объекта путем решения интегрального уравнения2.16 базируется на аппроксимации уравнения 2.16 системой линейных алгебраических уравнений. В некоторых случаях, когда заданы корреляционная функция входа


Сущность постановки задачи построения типовых динамических характеристик заключается в том, что динамические модели технологических процессов, имеющих одинаковые характеристики входных и выходных переменных, очевидно, формально могут быть представлены одной и той же математической моделью. Например, ясно, что если для двух одномерных линейных стационарных технологических процессов, независимо от их физической природы, корреляционные функции входной случайной функции равны и, кроме того, равны также взаимные корреляционные функции входной и выходной случайных функций, то такие два процесса должны иметь идентичное математическое описание, т.е. их весовые функции должны совпадать. Естественно, что это относится не только к объектам, выполняющим одни и те же технологические операции, ной к технологическим процессам, где выполняются разные по своей природе операции. Известно, что. для различных электрических, тепловых, механических и других явлений существует одно и то же математическое описание, дающее возможность решать с достаточной точностью практические задачи.
Очевидно, что решение задачи построения типовых моделей имеет большое практическое значение, так как это создаст условия для построения типовых систем управления и перехода к их серийному производству и массовому применению.
Список литературы
1)В.Н. Нефедов, В.А. Осипова. «Курс прикладной математики», 2012.
2)Я.Б. Зельдович, А.Д. Мышкис. «Элементы прикладной математики», 2010.
)В.Е. Гмурман. «Теория вероятностей и математическая статистика», 2009.